Tilting modules, dominant dimensions and Brauer-Schur-Weyl duality

报告题目:Tilting modules, dominant dimensions and Brauer-Schur-Weyl duality

报告时间:20211210900-10:00

报告地点:(线上)腾讯会议ID925 938 603   会议密码:1210

报告人简介:肖占魁,博士毕业于北京理工大学,研究代数学及其应用。研究内容涉及典型群与量子群的不变量理论;有限维代数的表示理论与组合,包含其在博弈论、量子信息科学等领域的应用;非交换环理论与算子代数。与胡峻教授合作证明了(量子)辛群不变量理论的第二基本定理。

报告摘要:This  talk is based on a joint work with Jun Hu, which comes from our second  attempt for studying the invariant theory of quantized orthogonal  groups. We use the dominant dimension to study the double centralizer  property and provide a criterion for a tilting module of a standardly  stratified algebra satisfying the double centralizer property. Moreover,  if A is a quasi-hereditary algebra with a simple preserving duality and  T is a faithful tilting A-module, then A has the double centralizer  property with respect to T. We also affirmatively answer an open  question of Mazorchuk and Stroppel.