黄学海,教授,博士生导师
研究方向:有限元方法,偏微分方程数值解法

办公室:红瓦楼907
Email: huang.xuehai@sufe.edu.cn
https://www.researchgate.net/profile/Xuehai-Huang
【教育工作经历】
2019年6月至今,上海财经大学数学学院,教授
2018年12月至2019年5月,上海财经大学数学学院,副教授
2015年2月至2018年11月,温州大学数学与信息科学学院,副教授
2010年7月至2015年1月,温州大学数学与信息科学学院,讲师
1999年9月至2010年6月,上海交通大学数学系,本硕博
【学术交流】
2018年2月,访问美国加州大学尔湾分校
2010年3月至2010年5月,访问北京国际数学研究中心
2008 年9 月至2009年12 月,访学美国宾夕法尼亚州立大学和内华达大学拉斯维加斯分校
【科研项目】
2022年1月至2025年12月,国家自然科学基金面上项目
2018年1月至2021年12月,国家自然科学基金面上项目
2014年1月至2016年12月,国家自然科学基金青年项目
2012年1月至2012年12月,国家自然科学基金数学天元项目
2021年7月至2024年6月,上海市自然科学基金原创探索项目
2017年1月至2019年12月,浙江省自然科学基金
2011年1月至2013年12月,浙江省自然科学基金
2016年9月至2017年8月,温州市科技计划项目
[1] L. Chen, and X. Huang*. A finite element elasticity complex in three dimensions. Math. Comp., 91(337): 2095-2127, 2022.
[2] L. Chen, and X. Huang*. Finite elements for div div conforming symmetric tensors in three dimensions. Math. Comp. , 91(335): 1107-1142, 2022.
[3] L. Chen, and X. Huang*. Finite elements for div- and divdiv-conforming symmetric tensors in arbitrary dimension. SIAM J. Numer. Anal. , 60(4): 1932-1961, 2022.
[4] S. Cao, L. Chen, and X. Huang*. Error analysis of a decoupled finite element method for quad-curl problems. J. Sci. Comput. , 90(1):29, 2022.
[5] H. Wei, X. Huang*, and A. Li. Piecewise divergence-free nonconforming virtual elements for Stokes problem in any dimensions. SIAM J. Numer. Anal. , 59(3):1835-1856, 2021.
[6] X. Huang, Y. Shi, and W. Wang*. A Morley–Wang–Xu element method for a fourth order elliptic singular perturbation problem. J. Sci. Comput. , 87(3):84, 2021.
[7] L. Chen, and X. Huang*. Nonconforming virtual element method for 2m-th order partial differential equations in R^n. Math. Comp. , 89(324):1711-1744, 2020.
[8] X. Huang. Nonconforming virtual element method for 2m-th order partial differential equations in R^n with m>n. Calcolo, 57(4): Paper No. 42, 38, 2020.
[9] J. Huang and X. Huang. A hybridizable discontinuous Galerkin method for Kirchhoff plates. J. Sci. Comput. , 78(1):290–320, 2019.
[10] L. Chen and X. Huang. Decoupling of mixed methods based on generalized Helmholtz decompositions. SIAM J. Numer. Anal., 56(5):2796-2825, 2018.
[11] L. Chen, J. Hu, and X. Huang. Multigrid methods for Hellan–Herrmann–Johnson mixed method of Kirchhoff plate bending problems. J. Sci. Comput., 76(2):673-696, 2018.
[12] P. Sun and X. Huang. Quasi-optimal convergence rate for an adaptive hybridizable C0 discontinuous Galerkin method for Kirchhoff plates. Numer. Math. , 139(4):795-829, 2018.
[13] L. Chen, J. Hu, X. Huang, and H. Man. Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems. Sci. China Math. , 61(6):973-992, 2018.
[14] J. Huang and X. Huang. A nonoverlapping DDM for general elastic body-plate problems discretized by the P1-NZT FEM. Int. J. Numer. Anal. Model., 15(1-2):86–101, 2018.
[15] L. Chen, J. Hu, and X. Huang. Fast auxiliary space preconditioners for linear elasticity in mixed form. Math. Comp., 87(312):1601 1633, 2018.
[16] W. Wang, X. Huang, K. Tang, and R. Zhou. Morley-Wang-Xu element methods with penalty for a fourth order elliptic singular perturbation problem.Adv. Comput. Math., 44(4):1041-1061, 2018.
[17] J. Huang, and X. Huang. An hp-version error analysis of the discontinuous Galerkin method for linear elasticity.Appl. Numer. Math., 133:83-99, 2018.
[18] L. Chen, J. Hu, and X. Huang. Stabilized mixed finite element methods for linear elasticity on simplicial grids in Rn. Comput. Methods Appl. Math. , 17(1):17–31, 2017.
[19] X. Huang and J. Huang. A superconvergent C0 discontinuous Galerkin method for Kirchhoff plates: error estimates, hybridization and postprocessing. J. Sci. Comput. , 69(3):1251–1278, 2016.
[20] R. An and X. Huang. A compact C0 discontinuous Galerkin method for Kirchhoff plates. Numer. Methods Partial Differential Equations , 31(4):1265–1287, 2015.
[21] X. Huang and J. Huang. A reduced local C0 discontinuous Galerkin method for Kirchhoff plates. Numer. Methods Partial Differential Equations , 30(6):1902–1930, 2014.
[22] Y. Xu, J. Huang, and X. Huang. A posteriori error estimates for local C0 discontinuous Galerkin methods for Kirchhoff plate bending problems. J. Comput. Math. , 32(6):665–686, 2014.
[23] X. Huang and J. Huang. The compact discontinuous Galerkin method for nearly incompressible linear elasticity. J. Sci. Comput. , 56(2):291–318, 2013.
[24] J.-R. C. Cheng, X. Huang, S. Shu, J. Xu, C. Zhang, S. Zhang, and Z. Zhou. Application of an energy-minimizing algebraic multigrid method for subsurface water simulations. Int. J. Numer. Anal. Model. , 10(2):374–388, 2013.
[25] J. Huang, X. Huang, and S. Zhang. A superconvergence of the Morley element via postprocessing. Recent Advances in Scientific Computing and Applications, 586:189–196, 2013.
[26] X. Huangand J. Huang. Error analysis of a discontinuous Galerkin method for Kirchhoff plates. J. Comput. Anal. Appl., 15(1):118– 132, 2013.
[27] J. Huang and X. Huang. Local and parallel algorithms for fourth order problems discretized by the Morley-Wang-Xu element method. Numer. Math., 119(4):667–697, 2011.
[28] J. Huang, X. Huang, and Y. Xu. Convergence of an adaptive mixed finite element method for Kirchhoff plate bending problems. SIAM J. Numer. Anal., 49(2):574–607, 2011.
[29] J. Huang, X. Huang, and W. Han. A new C0 discontinuous Galerkin method for Kirchhoff plates. Comput. Methods Appl. Mech. Engrg., 199(23-24):1446–1454, 2010.
[30] C. Chen, J. Huang, and X. Huang. A P1-P3-NZT FEM for solving general elastic multi-structure problems. J. Comput. Anal. Appl.,11(4):728–747, 2009.
[31] X. Huang, J. Huang, and Y. Chen. Error analysis of a parameter expansion method for corrosion detection in a pipe. Comput. Math. Appl., 56(10):2539–2549, 2008.