黄学海

黄学海,教授,博士生导师

研究方向:有限元方法,偏微分方程数值解法

办公室:红瓦楼907

Email: huang.xuehai@sufe.edu.cn

https://www.researchgate.net/profile/Xuehai-Huang



【教育工作经历】

20196月至今,上海财经大学数学学院,教授

201812月至20195月,上海财经大学数学学院,副教授

20152月至201811月,温州大学数学与信息科学学院,副教授

20107月至20151月,温州大学数学与信息科学学院,讲师

19999月至20106月,上海交通大学数学系,本硕博


【学术交流】

20182月,访问美国加州大学尔湾分校

20103月至20105月,访问北京国际数学研究中心

2008 9 月至200912 月,访学美国宾夕法尼亚州立大学和内华达大学拉斯维加斯分校


【科研项目】

20221月至202512月,国家自然科学基金面上项目

20181月至202112月,国家自然科学基金面上项目

20141月至201612月,国家自然科学基金青年项目

20121月至201212月,国家自然科学基金数学天元项目

20217月至20246月,上海市自然科学基金原创探索项目

20171月至201912月,浙江省自然科学基金

20111月至201312月,浙江省自然科学基金

20169月至20178月,温州市科技计划项目


【论文】

[1]    L. Chen, and X. Huang*. A finite element elasticity complex in three dimensions.  Math. Comp., 91(337): 2095-2127, 2022.

[2]    L. Chen, and X. Huang*. Finite elements for div div conforming symmetric tensors in three dimensions.  Math. Comp. , 91(335): 1107-1142, 2022.

[3]    L. Chen, and X. Huang*. Finite elements for div- and divdiv-conforming symmetric tensors in arbitrary dimension.  SIAM J. Numer. Anal. , 60(4): 1932-1961, 2022.

[4]    S. Cao, L. Chen, and X. Huang*. Error analysis of a decoupled finite element method for quad-curl problems.  J. Sci. Comput. , 90(1):29, 2022.

[5]  H. Wei, X. Huang*, and A. Li. Piecewise divergence-free nonconforming virtual elements for Stokes problem in any dimensions.  SIAM J. Numer. Anal. , 59(3):1835-1856, 2021.

[6]    X. Huang, Y. Shi, and W. Wang*. A Morley–Wang–Xu element method for a fourth order elliptic singular perturbation problem.  J. Sci. Comput. , 87(3):84, 2021.

[7]    L. Chen, and X. Huang*. Nonconforming virtual element method for 2m-th order partial differential equations in R^n.  Math. Comp. , 89(324):1711-1744, 2020.

[8]    X. Huang. Nonconforming virtual element method for 2m-th order partial differential equations in R^n with m>n.  Calcolo, 57(4): Paper No. 42, 38, 2020.

[9]    J. Huang and X. Huang. A hybridizable discontinuous Galerkin method for Kirchhoff plates.  J. Sci. Comput. , 78(1):290–320, 2019.

[10]    L. Chen and X. Huang. Decoupling of mixed methods based on generalized Helmholtz decompositions.  SIAM J. Numer. Anal., 56(5):2796-2825, 2018.

[11]    L. Chen, J. Hu, and X. Huang. Multigrid methods for Hellan–Herrmann–Johnson mixed method of Kirchhoff plate bending problems.  J. Sci. Comput., 76(2):673-696, 2018.

[12]    P. Sun and X. Huang. Quasi-optimal convergence rate for an adaptive hybridizable C0 discontinuous Galerkin method for Kirchhoff  plates.  Numer. Math. , 139(4):795-829, 2018.

[13]    L. Chen, J. Hu, X. Huang, and H. Man. Residual-based a posteriori error estimates for symmetric conforming mixed finite elements  for linear elasticity problems.  Sci. China Math. , 61(6):973-992, 2018.

[14]    J. Huang and X. Huang. A nonoverlapping DDM for general elastic body-plate problems discretized by the P1-NZT FEM.  Int. J. Numer. Anal. Model., 15(1-2):86–101, 2018.

[15]    L. Chen, J. Hu, and X. Huang. Fast auxiliary space preconditioners for linear elasticity in mixed form.  Math. Comp., 87(312):1601 1633, 2018.

[16]  W. Wang, X. Huang, K. Tang, and R. Zhou. Morley-Wang-Xu element methods with penalty for a fourth order elliptic singular          perturbation problem.Adv. Comput. Math., 44(4):1041-1061, 2018.

[17]     J. Huang, and X. Huang. An hp-version error analysis of the discontinuous Galerkin method for linear elasticity.Appl. Numer. Math., 133:83-99, 2018.

[18]   L. Chen, J. Hu, and X. Huang. Stabilized mixed finite element methods for linear elasticity on simplicial grids in Rn.  Comput. Methods Appl. Math. , 17(1):17–31, 2017.

[19]    X. Huang and J. Huang. A superconvergent C0 discontinuous Galerkin method for Kirchhoff plates: error estimates, hybridization and postprocessing.  J. Sci. Comput. , 69(3):1251–1278, 2016.

[20]    R. An and X. Huang. A compact C0 discontinuous Galerkin method for Kirchhoff plates.  Numer. Methods Partial Differential Equations , 31(4):1265–1287, 2015.

[21]   X. Huang and J. Huang. A reduced local C0 discontinuous Galerkin method for Kirchhoff plates.  Numer. Methods Partial      Differential Equations , 30(6):1902–1930, 2014.

[22]    Y. Xu, J. Huang, and X. Huang. A posteriori error estimates for local C0 discontinuous Galerkin methods for Kirchhoff plate       bending problems.  J. Comput. Math. , 32(6):665–686, 2014.

[23]    X. Huang and J. Huang. The compact discontinuous Galerkin method for nearly incompressible linear elasticity.  J. Sci. Comput. ,   56(2):291–318, 2013.

[24]    J.-R. C. Cheng, X. Huang, S. Shu, J. Xu, C. Zhang, S. Zhang, and Z. Zhou. Application of an energy-minimizing algebraic multigrid   method for subsurface water simulations.  Int. J. Numer. Anal. Model. , 10(2):374–388, 2013.

[25]   J. Huang, X. Huang, and S. Zhang. A superconvergence of the Morley element via postprocessing.  Recent Advances in Scientific Computing and Applications, 586:189–196, 2013.

[26]    X. Huangand J. Huang. Error analysis of a discontinuous Galerkin method for Kirchhoff plates.  J. Comput. Anal. Appl., 15(1):118–  132, 2013.

[27]    J. Huang and X. Huang. Local and parallel algorithms for fourth order problems discretized by the Morley-Wang-Xu element method.  Numer. Math., 119(4):667–697, 2011.

[28]    J. Huang, X. Huang, and Y. Xu. Convergence of an adaptive mixed finite element method for Kirchhoff plate bending problems. SIAM J. Numer. Anal., 49(2):574–607, 2011.

[29]    J. Huang, X. Huang, and W. Han. A new C0 discontinuous Galerkin method for Kirchhoff plates.  Comput. Methods Appl. Mech. Engrg., 199(23-24):1446–1454, 2010.

[30]    C. Chen, J. Huang, and X. Huang. A P1-P3-NZT FEM for solving general elastic multi-structure problems.  J. Comput. Anal. Appl.,11(4):728–747, 2009.

[31]    X. Huang, J. Huang, and Y. Chen. Error analysis of a parameter expansion method for corrosion detection in a pipe.  Comput. Math. Appl., 56(10):2539–2549, 2008.